

General Certificate of Education Advanced Level Examination
June 2010

Mathematics

Unit Further Pure 4

Tuesday 15 June 20109.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 The position vectors of the points P, Q and R are, respectively,

$$
\mathbf{p}=\left[\begin{array}{r}
3 \\
4 \\
-1
\end{array}\right], \quad \mathbf{q}=\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right] \quad \text { and } \quad \mathbf{r}=\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]
$$

(a) Show that \mathbf{p}, \mathbf{q} and \mathbf{r} are linearly dependent.
(b) Determine the area of triangle $P Q R$.

2 Let $\mathbf{A}=\left[\begin{array}{ll}1 & x \\ 2 & 3\end{array}\right], \mathbf{B}=\left[\begin{array}{rr}1 & -1 \\ 2 & 2\end{array}\right]$ and $\mathbf{C}=\left[\begin{array}{ll}4-4 x & 8 \\ 8 x-4 & 4\end{array}\right]$.
(a) Find $\mathbf{A B}$ in terms of x.
(b) \quad Show that $\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}=\mathbf{C}$ for some value of x.

3 The plane Π_{1} is perpendicular to the vector $9 \mathbf{i}-8 \mathbf{j}+72 \mathbf{k}$ and passes through the point $A(2,10,1)$.
(a) Find, in the form $\mathbf{r} . \mathbf{n}=d$, a vector equation for Π_{1}.
(b) Determine the exact value of the cosine of the acute angle between Π_{1} and the plane Π_{2} with equation $\mathbf{r} .(\mathbf{i}+\mathbf{j}+\mathbf{k})=11$.
(4 marks)

4 The fixed points A and B and the variable point C have position vectors

$$
\mathbf{a}=\left[\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right] \quad \text { and } \quad \mathbf{c}=\left[\begin{array}{c}
2-t \\
t \\
5
\end{array}\right]
$$

respectively, relative to the origin O, where t is a scalar parameter.
(a) Find an equation of the line $A B$ in the form $(\mathbf{r}-\mathbf{u}) \times \mathbf{v}=\mathbf{0}$.
(b) Determine $\mathbf{b} \times \mathbf{c}$ in terms of t.
(c) (i) Show that a. $(\mathbf{b} \times \mathbf{c})$ is constant for all values of t, and state the value of this constant.
(ii) Write down a geometrical conclusion that can be deduced from the answer to part (c)(i).

5 Factorise fully the determinant $\left|\begin{array}{ccc}x & y & z \\ x^{2} & y^{2} & z^{2} \\ y z & z x & x y\end{array}\right|$.
$6 \quad$ The line L and the plane Π have vector equations

$$
\mathbf{r}=\left[\begin{array}{r}
7 \\
8 \\
50
\end{array}\right]+t\left[\begin{array}{r}
6 \\
2 \\
-9
\end{array}\right] \quad \text { and } \quad \mathbf{r}=\left[\begin{array}{r}
-2 \\
0 \\
-25
\end{array}\right]+\lambda\left[\begin{array}{l}
5 \\
3 \\
4
\end{array}\right]+\mu\left[\begin{array}{l}
1 \\
6 \\
2
\end{array}\right]
$$

respectively.
(a) (i) Find direction cosines for L.
(ii) Show that L is perpendicular to Π.
(b) For the system of equations

$$
\begin{aligned}
6 p+5 q+r & =9 \\
2 p+3 q+6 r & =8 \\
-9 p+4 q+2 r & =75
\end{aligned}
$$

form a pair of equations in p and q only, and hence find the unique solution of this system of equations.
(c) It is given that L meets Π at the point P.
(i) Demonstrate how the coordinates of P may be obtained from the system of equations in part (b).
(ii) Hence determine the coordinates of P.

7 The transformation T is represented by the matrix \mathbf{M} with diagonalised form

$$
\mathbf{M}=\mathbf{U} \mathbf{D} \mathbf{U}^{-1}
$$

where $\mathbf{U}=\left[\begin{array}{rr}4 & -1 \\ 1 & 3\end{array}\right]$ and $\mathbf{D}=\left[\begin{array}{rr}27 & 0 \\ 0 & 1\end{array}\right]$.
(a) (i) State the eigenvalues, and corresponding eigenvectors, of \mathbf{M}.
(ii) Find a cartesian equation for the line of invariant points of T .
(b) Write down \mathbf{U}^{-1}, and hence find the matrix \mathbf{M} in the form

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

where a, b, c and d are integers.
(c) By finding the element in the first row, first column position of \mathbf{M}^{n}, prove that

$$
4 \times 3^{3 n+1}+1
$$

is a multiple of 13 for all positive integers n.

8 The matrix $\left[\begin{array}{rr}12 & 16 \\ -9 & 36\end{array}\right]$ represents the transformation which is the composition, in either order, of the two plane transformations

E: an enlargement, centre O and scale factor $k(k>0)$
and
S : a shear parallel to the line l which passes through O
Show that $k=24$ and find a cartesian equation for l.

END OF QUESTIONS

